Предмет: Математика,
автор: olia1986got
в треугольнике ABC проведена биссектриса BD угол A=75° угол C=35°
1.Доказать что треугольник ABC равнобедренный
2.Сравнить AD и DC
Ответы
Автор ответа:
112
В условии опечатка: надо доказать, что ΔBDC равнобедренный.
Ответ:
ΔBDC равнобедренный,
AD < DC.
Пошаговое объяснение:
а) Зная, что сумма углов треугольника 180°, найдем угол АВС:
∠АВС = 180° - (∠А + ∠С) = 180° - 110° = 70°
Так как BD биссектриса угла АВС, то
∠ABD = ∠CBD = 70°/2 = 35°.
В треугольнике BDC два угла равны, значит он равнобедренный по признаку равнобедренного треугольника.
б) В треугольнике напротив меньшего угла лежит меньшая сторона.
В ΔABD AD < BD, так как AD лежит напротив угла 35°, а BD напротив угла в 75°.
Но BD = DC (доказано выше), тогда
AD < DC
Приложения:
Похожие вопросы
Предмет: Английский язык,
автор: kotakosmosniy
Предмет: Русский язык,
автор: Аноним
Предмет: Английский язык,
автор: софия681
Предмет: Математика,
автор: tonkovichdasha
Предмет: Русский язык,
автор: yoqut1979p6py3g