Предмет: Геометрия, автор: nas145

Ребята помогите задачу решить пожалуйста........... Длина касательной, проведенной из некоторой точки к окружности, равна 20 см, а длина наибольшей
секущей, проведенной из этой точки, равна 50 см.Найдите радиус окружности. И чертеж приложите умоляю!!!!

Ответы

Автор ответа: Artem112
8
Так как секущая наибольшая, то она проходит через центр окружности.
Так как радиус, проведенный в точку касания перпендикулярен касательной, то применяем теорему Пифагора к образовавшемуся прямоугольному треугольнику:
(50-r)^2=r^2+20^2
\\\
2500-100r+r^2=r^2+400
\\\
100r=2100
\\\
r=21(sm)
Ответ: 21 см
Приложения:

nas145: а какая изначальная формула
nas145: у этой теоремы
Похожие вопросы
Предмет: Английский язык, автор: Виктория32011