Предмет: Геометрия,
автор: kirbaranova201
Помогите пожалуйста ! Очень нужно ! за короткое время !
Приложения:
Ответы
Автор ответа:
0
1. из подобия тр. 2.5/3=10/y y=12, x/2,5=8/10 x=2
2. в тр.АВС уг.В=180-2*70=40, в тр.А1В1С1 уг.А1=(180-40)/2=70,
т.о. треугольники подобны по 1 признаку.
3.тр. подобны по 2 пр.,т.к.стороны прилежащие к равным вертикальным углам соответственно пропорциональны(в соотношении 1:2), поэтому и высоты их также будут в том же соотношении, сл-но S2/S1=(0.5*2a*2h)/(0.5*a*h)=4 раза.
Автор ответа:
0
1.
Дано:
AB = 2,5см
AC = 3см.
MN = 10 см
KN = 8см
Найти:
х и у
Решение:
По 2 признаку подобия
Пропорция:
10/2,5 = 8/х
10х = 2,5 * 8
10х=20
х=20 :10
х=2 см
Находим y:
y/3 = 8/2
2y = 24
y = 24 / 2
y = 12см
2.
Дано:
AB=BC
A1B1 = B1C1
угол A = 70˚
угол B = 40˚
Доказать:
∆ABC ∞ ∆A1B1C1
Док-ство:
По 1 признаку,т.к.
AB = BC и A1B1 = B1C1,это 2 стороны,значит по двум сторонам и углу между ними.
3.
Дано:
BE=DE= 4см
AE=2см
CE=8см
Доказать:
∆ABE∞ ∆ECD
Док-ство:
1) Отношение площадей подобных фигур равно квадрату коэффициента подобия
S1/S2 = k^2
2) Пропорциональные стороны:
AE/ED = AB/CD = BE/CE = k
3) угол AEB = углу CED - как вертикальные углы.
4) AE/DE = k ; 2/4 = 1/2
BE/CE = k ; 4/8 = 1/2
5) S1/S2 = (1/2)^2 = 1/4
Следовательно отношение площадей будет равно 1/4
6) Т.к. вертикальные углы и пропорциональные стороны равны,
то ∆ABE∞ ∆ECD по 2 признаку подобия.
Дано:
AB = 2,5см
AC = 3см.
MN = 10 см
KN = 8см
Найти:
х и у
Решение:
По 2 признаку подобия
Пропорция:
10/2,5 = 8/х
10х = 2,5 * 8
10х=20
х=20 :10
х=2 см
Находим y:
y/3 = 8/2
2y = 24
y = 24 / 2
y = 12см
2.
Дано:
AB=BC
A1B1 = B1C1
угол A = 70˚
угол B = 40˚
Доказать:
∆ABC ∞ ∆A1B1C1
Док-ство:
По 1 признаку,т.к.
AB = BC и A1B1 = B1C1,это 2 стороны,значит по двум сторонам и углу между ними.
3.
Дано:
BE=DE= 4см
AE=2см
CE=8см
Доказать:
∆ABE∞ ∆ECD
Док-ство:
1) Отношение площадей подобных фигур равно квадрату коэффициента подобия
S1/S2 = k^2
2) Пропорциональные стороны:
AE/ED = AB/CD = BE/CE = k
3) угол AEB = углу CED - как вертикальные углы.
4) AE/DE = k ; 2/4 = 1/2
BE/CE = k ; 4/8 = 1/2
5) S1/S2 = (1/2)^2 = 1/4
Следовательно отношение площадей будет равно 1/4
6) Т.к. вертикальные углы и пропорциональные стороны равны,
то ∆ABE∞ ∆ECD по 2 признаку подобия.
Похожие вопросы
Предмет: История,
автор: Аноним
Предмет: Алгебра,
автор: voronaaulana184
Предмет: Математика,
автор: dominanya
Предмет: Алгебра,
автор: maggotleka
Предмет: Химия,
автор: zaichono4ek