Предмет: Геометрия, автор: mashulyazvereva

в прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки 5см и 12см. найти площадь треугольника

Ответы

Автор ответа: dnepr1
0
Отрезки на катетах от гипотенузы до точки касания тоже равны 5 и 12 см. Вторые отрезки, равные между собой, обозначим х.
Тогда один катет равен (5 + х) см, а второй - (12 + х) см.
По Пифагору (5 + 12)² = (5 + х)² + (12 + х)².
Раскрываем скобки:
289 = 25 + 10х + х² + 144 + 24х + х².
Получаем квадратное уравнение:
2х² + 34х - 120 = 0.
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=34^2-4*2*(-120)=1156-4*2*(-120)=1156-8*(-120)=1156-(-8*120)=1156-(-960)=1156+960=2116;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√2116-34)/(2*2)=(46-34)/(2*2)=12/(2*2)=12/4=3;
x_2=(-2116-34)/(2*2)=(-46-34)/(2*2)=-80/(2*2)=-80/4=-20.
Отрицательный корень отбрасываем.
Тогда катеты равны 5 + 3 = 8 см и 12 + 3 = 15 см.
S = (1/2)*8*15 = 60 см
².
Похожие вопросы