Предмет: Геометрия, автор: valiadraganetz

У правильній чотирикутній піраміді SABCD через середини сторін АВ і АD проведено площину, яка паралельна бічному ребру SA. Знайти площу утворенго перерізу, якщо сторона основи √2, а бічне ребро – 5.

Ответы

Автор ответа: anushkakovalova
0
Чертим пирамиду, диагонали основания (АС) и (ВD), высоту пирамиды SO. О - точка пересечения (АС) и (ВD) и центр квадрата АВСD. Треугольник АSC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), AO=OC=OS=sqrt(2)/2.
Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высотам этих треугольников и равны sqrt(3)/2. Проведем сечение через вершину пирамиды S и середины ребер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью треугольника SAD равен углу между АВ и SM, значит равен углу между SM и NM или углу SMO.
Из треугольника SOM получаем: cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)=sqrt(3)/3.

 left { {{y=2} atop {x=2}} right.
Автор ответа: valiadraganetz
0
Треугольник АSC не может быть равен треугольнику АВС по трем сторонам.
Похожие вопросы